Sunday, October 28, 2012

Definition of Terms



F-test is any statistical test in which the test statistic has an F-distribution under the null hypothesis. It is most often used when comparing statistical models that have been fitted to a data set, in order to identify the model that best fits the population from which the data were sampled.
 Chi-squared test, is any statistical hypothesis test in which the sampling distribution of the test statistic is a chi-squared distribution when the null hypothesis is true, or any in which this is asymptotically true, meaning that the sampling distribution (if the null hypothesis is true) can be made to approximate a chi-squared distribution as closely as desired by making the sample size large enough.
Variance is a measure of how far a set of numbers is spread out. It is one of several descriptors of a probability distribution, describing how far the numbers lie from the mean (expected value). In particular, the variance is one of the moments of a distribution.
Critical value is the value corresponding to a given significance level. This cutoff value determines the boundary between those samples resulting in a test statistic that leads to rejecting the null hypothesis and those that lead to a decision not to reject the null hypothesis. If the calculated value from the statistical test is less than the critical value, then you fail to reject the null hypothesis. If the calculated statistic is outside of the critical value, then you reject the null hypothesis and are forced to accept the alternate hypothesis.

By: Lera Gay Bacay

No comments:

Post a Comment